Blueprint
The Blueprint class validates and deploys a set of resources as a group. It provides a structured way to manage your Snowflake resources through two methods: plan
and apply
.
Blueprint provides options to customize how resources are deployed to Snowflake, including run_mode
, allowlist
, and dry_run
.
In Python, you utilize the Blueprint
class to create and manage blueprints. When using the CLI or GitHub Action with YAML configurations, a Blueprint is created automatically.
Example
from titan.blueprint import Blueprint
from titan.resources import Database, Schema
bp = Blueprint(
run_mode='create-or-update',
resources=[
Database('my_database'),
Schema('my_schema', database='my_database'),
],
allowlist=["database", "schema"],
dry_run=False,
)
plan = bp.plan(session)
bp.apply(session, plan)
Blueprint parameters
run_mode str
Defines how the blueprint interacts with the Snowflake account
create-or-update (default): Resources are either created or updated, no resources are destroyed
sync:
⚠️ WARNING
Sync mode will drop resources.Titan will update Snowflake to match the blueprint exactly. Must be used with
allowlist
.
resources list[Resource]
List of resources initialized in the blueprint.
allowlist list[str]
Specifies the allowed resource types in the blueprint.
dry_run bool
apply()
will return a list of SQL commands that would be executed without applying them.
vars dict
A key-value dictionary that specifies the names and values of vars.
vars_spec list[dict]
A list of dictionaries defining the
name
,type
anddefault
(optional) of all expected vars.
scope str
Limit Titan's scope to a single database or schema. Must be one of "DATABASE" or "SCHEMA". If not specified, Titan will manage any resource.
database str
The name of a database to limit Titan's scope to. Must be used with
scope
.
schema str
The name of a schema to limit Titan's scope to. Must be used with
scope
anddatabase
.
Methods
plan(session)
plan(session)
The plan method analyzes your Snowflake account to determine how it is different from your configuration. It identifies what resources need to be added, changed, or removed to achieve the desired state.
Parameters:
session (
SnowflakeConnection
): The session object used to connect to Snowflake
Returns:
list[ResourceChange]
: The list of changes that need to be made to the Snowflake account
apply(session, [plan])
apply(session, [plan])
The apply method executes the SQL commands required to update your Snowflake account according to the plan generated. Apply returns a list of SQL commands that were executed.
Parameters:
session (
SnowflakeConnection
): The session object used to connect to Snowflakeplan (
list[ResourceChange]
, optional): The list of changes to apply. If not provided, the plan is generated automatically.
Returns:
list[str]
: A list of SQL commands that were executed.
add(resource: Resource)
add(resource: Resource)
Alternate uses:
add(resource_1, resource_2, ...)
add([resource_1, resource_2, ...])
The add method allows you to add a resource to the blueprint.
Using vars
Vars in YAML
In YAML, vars are specified with double curly braces.
-- titan.yml
databases:
- name: "db_{{ var.fruit }}"
In the CLI, use the --vars
flag to pass values to Titan
# Specify values as a key-value JSON string
titan plan --config titan.yml \
--vars '{"fruit": "banana"}'
Alternatively, use environment variables to pass values to Titan. Vars environment variables must start with TITAN_VAR_
and must be in uppercase.
export TITAN_VAR_FRUIT="peach"
titan plan --config titan.yml
Vars defaults in YAML
Use the top-level vars:
key to define a list of expected vars. You must specify a type
, you can optionally specify a default
.
vars:
- name: color
type: string
- name: fruit
type: string
default: apple
databases:
- name: "db_{{ var.color }}_{{ var.fruit }}"
Vars in Python
from titan.blueprint import Blueprint
from titan.resources import Database
# In Python, a var can be specifed using Titan's var module
from titan import var
db1 = Database(name=var.db1_name)
# Alternatively, a var can be specified inside a string with double curly braces. This is Jinja-style template syntax, not an f-string.
db2 = Database(name="db_{{ var.db2_name }}")
# Use the vars parameter to pass values to Titan
Blueprint(
resources=[db1, db2],
vars={
"db1_name": "pineapple",
"db2_name": "durian",
},
)
Vars defaults in Python
from titan.blueprint import Blueprint
from titan.resources import Database
# Use the vars_spec parameter to define a list of expected vars. You must specify a `type`, you can optionally specify a `default`.
Blueprint(
resources=[Database(name="db_{{ var.color }}_{{ var.fruit }}")],
vars={"color": "blue"},
vars_spec=[
{
"name": "color",
"type": "string",
},
{
"name": "fruit",
"type": "string",
"default": "apple",
}
]
)
Using scope
🔬 EXPERIMENTAL
When the scope
parameter is used, Titan will limit which resources are allowed and limit where those resources are located within Snowflake.
Using database scope
-- raw.yml
scope: DATABASE
database: RAW
schemas:
- name: FINANCE
- name: LEGAL
- name: MARKETING
tables:
- name: products
schema: FINANCE
columns:
- name: product
data_type: string
Using schema scope
-- salesforce.yml
scope: SCHEMA
database: DEV
schema: SALESFORCE
tables:
- name: products
columns:
- name: product
data_type: string
tags:
- name: cost_center
allowed_values: ["finance", "engineering"]
Scope example: re-use the same schema setup for multiple engineers
-- dev_schema.yml
scope: SCHEMA
database: DEV
tables: ...
views: ...
procedures: ...
titan apply --config dev_schema.yml --schema=SCH_TEEJ
titan apply --config dev_schema.yml --schema=SCH_ALLY
titan apply --config dev_schema.yml --schema=SCH_DAVE
Scope example: combine scope with vars
-- finance.yml
scope: SCHEMA
database: "ANALYTICS_{{ vars.env }}"
schema: FINANCE
tables: ...
views: ...
procedures: ...
titan apply --config finance.yml --vars='{"env": "stage"}'
titan apply --config finance.yml --vars='{"env": "prod"}'
Last updated